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Vectors in Computer Science
Physics                       Magnitude and direction
Computer Science      An array of numbers (an ordered list of 

numbers)
Mathematics identifying points in space, each element of a vector gives the 
coordinate along one axis. 
Vectors in CS is represented by lower case bold symbol say v 

v represents a single point in a cartesian coordinate system of 
n-dimensions. Mathematically 
(each element is in R, and the vector has n elements)
Each point can be represented as a vector  an arrow 
connecting origin (the tail) to the point (the tip)

In this figure (a), 𝑣𝑣(1) is a vector in the an n=2 dimensional coordinate 
system and in figure (b) it is in an n=3 dimensional coordinate system

Convention: In linear algebra, all vectors tail is fixed to the origin 
of this coordinate system (different from physics)

Length of the arrow = magnitude of the vector 𝑣𝑣(1)

v = [𝑣𝑣1 …𝑣𝑣𝑖𝑖 ⋯𝑣𝑣𝑛𝑛]

𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛

x

y

𝑣𝑣(1) = (𝑥𝑥1,𝑦𝑦1)

𝑣𝑣(2) = (𝑥𝑥2,𝑦𝑦2)

𝑣𝑣(3) = (𝑥𝑥3,𝑦𝑦3)

Figure : a

Figure: b



Linear algebra in data science/AI/ML 

Training 
example #

Feature #1 Feature #2

1 𝑥𝑥1 𝑦𝑦1
2 𝑥𝑥2 𝑦𝑦2
3 𝑥𝑥3 𝑦𝑦3 x

y

𝑣𝑣(1) = (𝑥𝑥1,𝑦𝑦1)

𝑣𝑣(2) = (𝑥𝑥2,𝑦𝑦2)

𝑣𝑣(3) = (𝑥𝑥3,𝑦𝑦3)

A huge dataset with n number of features 
can be represented as points in an  n-dimensional cartesian coordinate system 
A vector of n elements is an n-dimensional vector with one dimension for each element.
(i) Visual intuition
(ii) other mathematical convenience (we will see later)

Conclusion: the coordinate axes could be equivalent to
Attributes/features/covariates/regressors/independent variables

The number of vectors you get is equal to the number of training data instances



Vectors do not just represent data. They also help represent our model. Many types 
of Machine Learning models represent their learning as vectors. All types of neural 
networks do this. Given some data, it will learn dense representations of that data. 
These representations are essentially categories kin to recognize new given data.

Linear algebra in data science/AI/ML 

Weight Vector

Data

New Vector



Basis Vectors and Linear Combinations

x

y

𝑣𝑣(1) = (𝑥𝑥1,𝑦𝑦1)

𝑣𝑣(2) = (𝑥𝑥2,𝑦𝑦2)

𝑣𝑣(3) = (−2,2)

Let    �𝑥𝑥 = 1
0 and       �𝑦𝑦 = 0

1
be a unit vector (of magnitude 
1) aligned with the x and y axis

Question: Now 𝑣𝑣(1) can be represented in terms of �𝑥𝑥 and �𝑦𝑦 How?

𝐴𝐴𝐴𝐴𝐴𝐴: 𝑣𝑣(1) = (𝑥𝑥1. �𝑥𝑥) + (𝑦𝑦1. �𝑦𝑦)
𝑣𝑣(3) = (-2. �𝑥𝑥) + (2. �𝑦𝑦)

Terminology Alert #2: The above representation is called  a LINEAR COMBINATION 

Terminology Alert #1: Such unit 
vectors aligned with the axes i.e. �𝑥𝑥
and �𝑦𝑦 are called “BASIS VECTORS”

Conclusion: 
Any vector can be represented 
as a linear combination of its 
basis vectors



Linear Combination in Data Science
Any training data instance can be represented as a linear combination

Example the instance  𝑣𝑣(1) = (𝑥𝑥1. �𝑥𝑥) + (𝑦𝑦1. �𝑦𝑦)

Mathematical Meaning: Linear combination is obtained by stretching the �𝑥𝑥 and 
�𝑦𝑦 basis vectors with scalar  values 𝑥𝑥1 and 𝑦𝑦1 (sum of two scaled unit vectors)

Physical meaning: 𝑣𝑣(1) is composed of 𝑥𝑥1 parts of feature �𝑥𝑥 and 𝑦𝑦1 parts of 
feature �𝑦𝑦

Two alternatives to visualize multiple training data instances (the training set) 
(i) Points in the feature space (the axes)
(ii) A list of vectors



Basis Vectors “Choice” could be arbitrary
Instead of unit vectors aligned with the axes,

We could have picked virtually any set of vector 
as our basis vectors (e.g., �𝑣𝑣 and �𝑤𝑤)

and represent all other points in the dataset
as a linear combination of these two new basis 
vectors  �𝑣𝑣 and �𝑤𝑤

It will still work the same 

Note �𝑣𝑣 and �𝑤𝑤 not aligned with axes of the 
original coordinate system

Terminology alert !
In 𝑅𝑅2 �𝑥𝑥 = 1

0 and �𝑦𝑦 = 0
1 are called “standard 

basis” (which are also  orthonormal i.e., 
perpendicular to each other)

�𝑣𝑣 and �𝑤𝑤 are orthonormal wrt to each other but
Not wrt to the standard basis 

Conclusion: 
Basis vectors are a matter of 
choice. One can take liberties 
according to the nature of the 
problem 



Understanding the Span 
• Definition: 

set of all linear combinations (nothing but points or vectors) 
that you can potentially reach given a set of vectors 

• Meaning: 
Given any set of vectors (say two), what is the set of points can 

you reach in this coordinate system? In 𝑅𝑅2 if no constraints are given, 
the two standard basis vectors will produce a span equivalent to a 2D 
plane sheet which is infinite. In reality though, often there are 
constraints.



Illustration of Span

Question: in 𝑅𝑅3 the 
standard basis �𝑥𝑥 = 1

0 and 
�𝑦𝑦 = 0

1 will give a span 
equal to ? 

Ans: A plane sheet cutting 
through the origin.



Why we need span in Data Science

• Given a set of vectors, what can you do with them? 
• You can add (subtract) or multiply by a scalar 

• You're given a list of vectors, and told you can only play with these vectors.
• See all possibilities you can make with them. The set of all things you can make is the 

span of those given vectors.

• That the span is a subspace (subset) is nice  reduces search space for one

• it's always good to have objects that are closed under certain operations, and 
subspaces are just that: closed under vector addition and scalar multiplication. 

• This isn't true for most generic sets of vectors, but definitely true for the span of a set 
of vectors. So spans have nice properties.



Special case when given vectors line up

Note if you are given two vectors that 
Line up, the set of all linear combinations
Addition scalar multiple, now will give you 
SPAN = Just a line that is aligned with these two vectors only
not a 2D plane sheet



Reinforcing Linear Dependence and Span

x

y

�𝑣𝑣 = (2,3)

Suppose a third vector �𝑣𝑣 is on the span of your 
previous two vectors �𝑥𝑥 and �𝑦𝑦

How?  2 �𝑥𝑥 + 3 �𝑦𝑦 = �𝑣𝑣

�𝑣𝑣 does not add to the span 
(no new points can be reached )

Terminology Alert !
All such vectors �𝑣𝑣 are called linearly dependent 
on the previous two vectors �𝑥𝑥 and �𝑦𝑦

Linearly dependent vectors
(i) Do not add to the span
(ii) Can be expressed as a linear combination of 

other vectors  



Reinforcing Linear Independence and Span
Suppose a third vector �𝑣𝑣 is not on the span of your previous 
two vectors �𝑥𝑥 and �𝑦𝑦

�𝑣𝑣 adds to the span 
(a whole new points can be reached using �𝑥𝑥, �𝑦𝑦and �𝑣𝑣 )

Terminology Alert !
All such vectors �𝑣𝑣 are called linearly independent of the 
previous two vectors �𝑥𝑥 and �𝑦𝑦

Linearly independent vectors
(i) Adds to the span
(ii) Cannot be expressed as a linear combination of other 

vectors  
(iii) Basis vectors need to be linearly independent to span 

the whole vector space

�𝑣𝑣 protruding up from the xy plane
Unlocks another (third) dimension



SPAN and Linear Dependence in Data Science

If a vector is redundant and can be expressed as a combination of the 
first two; i.e. linearly dependent 
I can ignore use of new variables while doing analysis
A form of reduction while making sense of big data with lot of points

If a vector is not the span and it expands the span of the previous two 
vectors (adds a dimension), this kind of third vector is called as  linearly 
independent w.r.t the previous two vectors (because I cannot ignore 
this third vector)



Linear Transformations

• Linear Transformation is essentially a function in linear algebra

• They take in a input vector x and produce an output vector y 

• x (linear transformation)  y 

• Geometry: Input vector moves over to its corresponding output 
a notion of bending the vector space



Transformation Contd..

• In linear algebra, transformation of the vector space is linear 

• Meaning

1. origin remains the same before and after transformation

2.  the grid lines of the vector space are parallel and evenly 
spaced across either side of the transformation



Matrices

• Matrix  a way of packing information

• i.e. taking in a vector 𝑥𝑥=5
𝑦𝑦=7

• I want to get an output or  have an output vector  𝑎𝑎
𝑏𝑏

• Find a matrix such that   x. m11 + y. m21  =
x. m12 + y. m22  =

• 5 𝑚𝑚11
𝑚𝑚21

+ 7 𝑚𝑚12
𝑚𝑚22

= 5 m11 + 7. m21              M = 𝑚𝑚11
𝑚𝑚21

𝑚𝑚12
𝑚𝑚22

5. m12 +  7. m22

𝑎𝑎
𝑏𝑏



Matrices for Transformation

• First column of the matrix M  where the first basis vector will land 
after transformation 

• Second column of the matrix M  where the second basis vector will 
land after transformation

• Interpretation1
• Matrices can be transformation of basis vectors



Matrices

• Apart from interpreting matrices as linear transformations there is 
another very important aspect 

• Matrices are a compact way for storing data containing multiple 
features (the columns) and huge number of training examples (rows)



Determinant of Matrix
Determinant of a matrix A (det A) 

quantifies the factor by which the area changes (increases or decreases) 
by a linear transformation specified by a matrix A

Det A = 0   if the transformation squishes the vectors onto a line or a point (in 2D) or a region with no volume

Det A is negative if the space/orientation is flipped 

Det A is positive if the transformation cannot squish
vectors onto a line or a point or a 
lower dimension compared to the input space



Understanding Det(A)=0
Since a matrix is a transformation, it causes an input vector to land on 

some output vector.

Now if the determinant of the matrix (transformation) is zero, it means 
that the area/volume of the transformed output vector space, is not 
there. 

When determinant of a matrix is zero, it means that the output vector 
is a line, point, or a plane



Inverse of Matrices

Say �𝑥𝑥 is a vector of variables 
A corresponds to some linear transformation that bends space

we are looking for a vector �𝑥𝑥 (nothing but a point) which after 
transformation by matrix A lands on a pre-specified vector �𝑣𝑣

𝑥𝑥 = 𝐴𝐴−1𝑣𝑣
Playing a transformation in reverse with �𝑣𝑣 to see where it lands; 
wherever it lands is �𝑥𝑥
When det(𝐴𝐴) = 0, there is a no inverse

𝐴𝐴−1𝐴𝐴𝑥𝑥 = 𝐴𝐴−1𝑣𝑣

𝐴𝐴−1𝐴𝐴 = 𝐼𝐼



Some Intepretations of Matrix Transformations

Suppose you apply inputs �𝑥𝑥 in a system and observe an output �𝑣𝑣 . The 
inherent nature of a system transforms the �𝑥𝑥 to �𝑣𝑣 . In such case, we can 
solve for A from the  Ax = v ; A may give how much each input feature 
contributes to the observed output; a transfer function

𝐴𝐴𝑥𝑥 = 𝑣𝑣

Suppose you know the output �𝑣𝑣 in a system and know how the system 
behaves specified by A. However,  there are some uncertainties. Playing 
transformation in reverse with 𝐴𝐴−1 and �𝑣𝑣 , one can get an approximate 
idea of the values of the features next time 



Rank of a matrix 

• Solutions are harder to exist when the transformation squishes points onto 
a lower dimension

• This interesting aspect has some fancy terminology known as RANK

• When output via a matrix transformation is a line (i.e. one dimensional), 
we say that this matrix transformation has a RANK = 1

• Similarly, if the output via a matrix transformation is a 2D plane, then its 
RANK = 2 and so on;

• In general, the term RANK says  the number of dimensions in the 
“output” found from a matrix transformation



Rank and Column Spaces

• Set of all possible outputs for a matrix transformation is known as 
column space

• Remember that columns of a matrix (transformation) say  where 
your basis vectors land after this transformation is used

• Span of transformed vectors above gives all possible outputs

• Column space is the span of the columns of your matrix 



Null Spaces

• Set of vectors that land on the origin (zero vectors)  Null space 

𝐴𝐴𝑥𝑥 = 𝑣𝑣 ⇒ 𝐴𝐴𝑥𝑥 = 0
When v happens to be a 0 vector 0

0 , the null space gives you all 
possible solutions of the equation.



Dot products

When two vectors are 
generally pointing in the 
same direction, their dot 
product is positive 

Dot product of two vectors ( �𝑣𝑣. �𝑤𝑤) = 

length of “projection” of the 2nd vector (�𝑤𝑤) onto the 
first vector �𝑣𝑣

x 

length of the first vector (v) 

Note: order does not matter on which vector is 
projected



Dot products contd..

When two vectors are 
generally pointing in the 
opposite direction, their 
dot product is negative



Dot products

When two vectors are 
perpendicular

(Note this can be viewed 
as neither same nor 
opposite direction) 

The dot product is zero 



What can dot products tell  Indicate correlation



DUALITY of DOT products and Matrix vector 
Multiplication 

• Linear transformations  those which take in vectors in multiple 
dimensions (say from 2D or above) and produce an output to 1D (a 
single number on the real number line  i.e. from vectors to numbers)

• This is similar to multiplying a 1x 2 matrix and a 2x 1 matrix which 
gives a single number (much like matrix vector multiplication)

• 1x 2 matrices are analogical to 2D vectors  DUALITY 

• Dot product is similar to matrix vector multiplication



Duality contd..

• Dual of a vector   the linear transformation that it encodes 

• Dual of a (matrix) linear transformation in a one d space is a 
certain vector in that one d space

• So vectors can be viewed as an embodiment of a linear 
transformation, and not merely a single data point in a coordinate 
system



CROSS PRODUCTS 

Unlike dot products in cross products “order
Matters” �𝑣𝑣 𝑋𝑋 �𝑤𝑤 = − �𝑤𝑤 X �𝑣𝑣

V is on right of W (counter-clock rotation) 
area is positive
Negative otherwise



CROSS PRODUCTS 

If V is on left of W (counter-
clock rotation) 
area is negative

So, �𝑣𝑣 𝑋𝑋 �𝑤𝑤 = − �𝑤𝑤 X �𝑣𝑣



Compute  Cross Product
For 2D cross product �𝑣𝑣 𝑋𝑋 �𝑤𝑤, we write 
the coordinates of �𝑣𝑣 and �𝑤𝑤 as the 
first and second column of the matrix 
respectively. Then we just compute 
the determinant. 

NOTE: Here the determinant 
represents the factor by which 
the area of this parallelogram 
is changed.



Compute  Cross Product contd..

For a 3D cross product between �𝑣𝑣 𝑋𝑋 �𝑤𝑤, the second and third columns of the 
matrix contain the coordinates of �𝑣𝑣 and �𝑤𝑤 respectively and the first column 
contains the basis vectors. Then we just compute the determinant. 



Cramer’s Rule
• A convenient method to solve a linear system of equations for just one single 

variable without having to solve the whole system of equations.  

• Let’s consider the following system of equations:
𝑎𝑎1x + 𝑏𝑏1y = 𝑐𝑐1
𝑎𝑎2x + 𝑏𝑏2y = 𝑐𝑐2

Let D be the determinant of the coefficient matrix and 𝐷𝐷𝑥𝑥 be the determinant 
formed by replacing the x column with the constant column.

• Using Cramer’s rule:

x = 𝐷𝐷𝑥𝑥
𝐷𝐷

=
𝑐𝑐1 𝑏𝑏1
𝑐𝑐2 𝑏𝑏2
𝑎𝑎1 𝑏𝑏1
𝑎𝑎2 𝑏𝑏2

, D ≠ 0



Cramer’s Rule contd..

• Similarly, while solving for y, the y column is replaced with the 
constant column.

y = 
𝐷𝐷𝑦𝑦
𝐷𝐷

=
𝑎𝑎1 𝑐𝑐1
𝑎𝑎2 𝑐𝑐2
𝑎𝑎1 𝑏𝑏1
𝑎𝑎2 𝑏𝑏2

, D ≠ 0



Change of Basis
• A vector sitting in a 2D space can be 

described with coordinates. We can think 
each of the numbers as a scalar that 
stretches or squishes vectors.

• If ̂𝚤𝚤 and ̂𝚥𝚥 are basis vectors, the first 
coordinate scales ̂𝚤𝚤 and the second 
coordinate scales �𝑗𝑗.

Question: What if we used different basis vectors in a 
different grid ??



Change of Basis contd..
• Space does not have a particular system of grid. So, someone might draw their own 

grid in the space with a fixed origin.

• A vector in one grid(coordinate system) is different in another grid (coordinate 
system) depending on the choice of the basis vectors.

• Now the question is: How do we translate between coordinate systems?



Change of Basis contd..
• Let’s say Mike has a different coordinate system than ours. In order to translate a vector 

from Mike’s coordinate system to our coordinate system, we have to scale each of his basis 
vectors by the corresponding coordinates of the vector of our system and add them 
together.

Mike’s 
coordinate

Our 
coordinate



Eigenvector and Eigenvalue

• Let A be a square matrix. Then a 
nonzero vector �⃗�𝑣 is an 
eigenvector of A if there exists a 
scalar 𝜆𝜆 such that

A �⃗�𝑣 = 𝜆𝜆 �⃗�𝑣

• The scalar 𝜆𝜆 is known as the
eigenvalue corresponding to the
eigenvector.



Eigenvector and Eigenvalue contd..

• During transformations, eigenvectors remain in their own span.

• A matrix can only stretch or squish these vectors like a scalar.

• The factor by which an eigenvectors gets stretched or squished is called 
its corresponding eigenvalue.



Eigenvector and Eigenvalue contd..
• Question: Can eigenvalues be negative?
☞ Yes, eigenvalues can be negative. An eigenvector with an eigenvalue of ⁄−1

2 (the yellow
vector)means that the vector gets flipped and squished by a factor of ⁄1 2 . 

NOTE: Although the vector gets flipped and squished by a factor of ⁄1 2 , it stays on
the same line in its span without getting rotated off of it.

Flipped and squished by ½ 



Eigendecomposition

• When we break any mathematical objects into their constituent parts or 
find their properties, we can understand them better.  For example, we can 
understand the true nature of an integer when we decompose it into prime 
factors.

• Similarly, when we decompose matrices, we can learn about their 
functional properties which is not evident when we represent them as an 
array of elements.

• One of the widely used matrix decompositions is eigendecomposition in 
which we decompose a matrix into a set of eigenvectors and eigenvalues.



Eigendecomposition contd..
• Suppose that a square matrix A has n linearly independent eigenvectors,

{𝑣𝑣1, . . . ,𝑣𝑣𝑛𝑛}, with corresponding eigenvalues {λ1, . . . , λ𝑛𝑛 }. 

• We may concatenate all of the eigenvectors to form a matrix V with one
eigenvector per column: V = [𝑣𝑣1, . . . ,𝑣𝑣𝑛𝑛]. 

• Similarly, we can concatenate the eigenvalues to form a vector 
λ = [λ1, . . . , λ𝑛𝑛]⏉. 

• If Λ is a diagonal matrix,  then the eigendecomposition of A is given by:
A = V Λ 𝑽𝑽−1



Eigendecomposition contd..
• What does Eigendecomposition tell us about a matrix?
• A matrix is singular if and only if any of the eigenvalues are zero.
• If eigenvalues are all positive, then the matrix is called positive definite.
• If eigenvalues are all positive or zero-valued, then the matrix is called 

positive semidefinite.
• If eigenvalues are all negative, then the matrix is called negative definite.
• If eigenvalues are all negative or zero-valued, then the matrix is called 

negative semidefinite.

• [source: Deep Learning]



Singular Value Decomposition

• Eigendecomposition works only if a matrix is square. So when a matrix 
is not square we use singular value decomposition.  

• Singular value decomposition is a commonly used method for 
decomposing a matrix into three other matrices.

• In other words, the singular value decomposition is the factorization of 
an n ✕m matrix A as the product A = UΣ𝑉𝑉⏉ where U and V are 
orthogonal matrices and Σ is a diagonal matrix(NOT necessarily a 
square matrix).

• The diagonal entries, σ1≥ σ2≥ …… σ𝑚𝑚≥ 0, are called singular values of 
A. The columns of U are called the left-singular vectors and the columns 
of V are called the right-singular vectors of A.



Singular Value Decomposition contd..
• We can actually interpret the singular value decomposition of A in terms 

of the eigendecomposition of functions of A. The left-singular vectors of 
A are the eigenvectors of 𝐴𝐴𝐴𝐴⏉. The right-singular vectors of A are the 
eigenvectors of 𝐴𝐴⏉A. The non-zero singular values of A are the square 
roots of the eigenvalues of 𝐴𝐴⏉A. The same is true for 𝐴𝐴𝐴𝐴⏉.

• One of the most useful features of the singular value decomposition is 
that we can use it to partially generalize matrix inversion to non-square 
matrices.

[source: Deep Learning]



Helpful Resources and References

This document uses some snapshot geometrical pictures from
youtube channel of 3blue1brown for geometry of linear algebra
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
Please check it out for other geometric interpretations beyond AI and data science

Check out Linear algebra materials by Prof. Zico Kolter for mathematical formulaes and proofs
https://www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.cs.cmu.edu/%7Ezkolter/course/15-884/linalg-review.pdf
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